If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-30x+9=0
a = 18; b = -30; c = +9;
Δ = b2-4ac
Δ = -302-4·18·9
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{7}}{2*18}=\frac{30-6\sqrt{7}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{7}}{2*18}=\frac{30+6\sqrt{7}}{36} $
| 1/5x=26 | | 2x-5(x-5)=-4+2x+9 | | 4b-22=30 | | 20=4m-4* | | 7x=59.5 | | 4x2+3=103 | | x-17.3=3.8 | | 88=8(n-85) | | 10x-4=3x+31 | | -7x-10=-9x | | 4r-13=47 | | 45=26+x* | | 3a-15=2a-12+15 | | (7x6)+(7x)=42 | | 5(3n+10)=40 | | 15f=30 | | 6+8k=-2k+7k | | 2x(^3/4)=58 | | 3x=(1/9)^2x-10 | | 5-2xx=-7 | | 4-x+4=4x-5x+8 | | 13d-12-3d=48 | | -5x=-7-5x | | 3/4x+10=5-1/2x | | -v-7=-3 | | 3x–12=9 | | (z-8)+z+(z+3)=61 | | 5+3c=4 | | 4y+4=6y-8 | | 3x+8=2(x+12) | | 2m-3=-7 | | 3 x+10=5−21 x |